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Abstract— 

A subfield of machine learning known as "Human Activity Recognition" focuses on identifying specific human 

actions from sensor data, particularly one-dimensional time series data. In the past, activity detection machine 

learning models were built using characteristics that were manually created. But that's no easy achievement; it calls 

for extensive knowledge of the topic as well as feature engineering. Models can now automatically learn 

characteristics from raw sensor data, making it more simpler and leading to better classification results, all thanks to 

deep neural networks. Ensemble learning of several convolutional neural network (CNN) models is introduced in 

this research as a new method for human activity identification. Using the freely accessible dataset, we train three 

separate CNN models and then construct several ensembles of these models. Outperforming approaches found in the 

literature, the combined results of the first two models achieve an accuracy of 94%. 

 

Index Terms— 

Convolutional neural networks, deep learning, ensemble learning, activity recognition in humans. 

 

I. INTRODUCTION 

A wide range of industries and purposes have found 

uses for Human Activity Recognition (HAR), such as 

security, automated surveillance, and smart 

healthcare systems. Firstly, unlike video sensors, 

which might compromise users' privacy, on-body 

sensors like gyroscopes, proximity sensors, 

magnetometers, temperature sensors, etc., are ideal 

for HAR applications. Second, a whole-body sensor 

network (BSN) enables more precise signal 

collection system deployment, and third, they lessen 

the constraints imposed by the surrounding 

environment and fixed camera locations, similar to 

video-based datasets. HAR has defined an essential 

role in ubiquitous computing [1] because to the 

streamlined data collection procedure made possible 

by embedded sensors, particularly with the 

proliferation of smartphones over the last decade. 

Hence, smartphones may effectively function as an 

array of sensors worn by the body to gather data. 

Feature extraction from these gathered data points 

used to be a laborious, task-dependent, and heuristic 

procedure. Feature extraction has traditionally relied 

on features that are purpose-built and application-

specifically chosen. In order to prepare the raw 

signals for classification algorithms, statistical 

metrics like variance and mean, as well as transform 

coding metrics like Fourier transforms, were 

retrieved. One drawback of these approaches is that 

they are only useful for certain classification tasks. 

Another issue with feature selection by hand is the 

potential loss of raw signal information [2]. The 

availability of more data and more computing power, 

together with developments in deep learning, have 

greatly facilitated the acceleration and enhancement 

of this process. Because deep learning models can 

automatically extract features and apply them to 

various classification tasks, the feature selection 

process is no longer task-dependent. Maximizing the 
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utilization of this cutting-edge research for focused 

HAR implementation is a natural flow with the 

availability of deep learning. Consequently, this 

work's objective is to provide a methodical procedure 

for a more simplified feature representation in order 

to enhance activity recognition by means of ensemble 

learning of convolutional neural networks (CNNs) 

[3]. Convolutional neural networks are heavily used 

in the current HAR research. By using its unique 

unification layer to combine feature maps at the 

conclusion, Deep CNN in [4] is able to adjust 

automatic feature learning from raw inputs. In [5], 

the author outlines a less complex CNN-based 

method that uses three distinct subsets of the same 

dataset to train the model. The feature extraction 

strategy in [2] makes use of a long short-term 

memory (LSTM) network and a softmax classifier 

since LSTMs are good at repeated jobs. Due to the 

one-dimensional nature of the dataset, RNN-LSTM 

has also been investigated for this application. This 

architecture is comparable to RNN, which has shown 

the greatest promise in natural language processing 

(NLP) applications [6]. To further enhance 

performance, HAR has also been used in [7] using 

hybrid models of CNN and RNN-LSTM. Because of 

their superior ability to infer time-order correlations, 

RNNs and LSTMs work together in a hybrid model 

to better identify short-range activities.inter-sensor 

measurements. Due to their superior feature learning 

in recursive patterns, CNNs are better able to infer 

repeated, long-term behaviors. Using deep belief 

networks (DBNs) via restricted Boltzmann Machines 

(RBMs) to prevent the model from overfitting and 

keep training time consumption low is an intriguing 

method to HAR [8]. As an alternative, [9] outlines a 

hybrid method for sequential human activity 

identification. As a feedforward network with pre-

selected hidden layers and nodes that don't need 

adjusting, an extreme learning machine (ELM) is 

investigated. A combined CNN-LSTM architecture 

incorporates the ELM as a feature extractor and uses 

it as a classifier. Effective sequential activity 

recognition is achieved by combining convolutional 

procedures with an LSTM for recurrent units. In 

reference 10, we meet yet another LSTM-CNN 

design for HAR. This design incorporates 

convolutional layers after a two-layer long short-term 

memory (LSTM) that processes raw data acquired by 

mobile sensors. In order to further reduce the number 

of parameters in the model, a global average pooling 

layer (GAP) is used. After the GAP layer, a batch 

normalization layer (BN) is added to further 

accelerate convergence. Several HAR datasets show 

that the model performs well in evaluations. Many 

deep learning algorithms are associated with 

increasing computational complexity and resource 

overheads; [11] presents a method that accounts for 

this. This method makes HAR easier to handle and 

more efficient on mobile devices that don't have a lot 

of processing power. Using temporal convolutions on 

the spectrogram domain of the data, the technique 

described in the study extracts features from various 

portions of the raw signal. The result is that the learnt 

traits are resistant to changes in a wide range of 

parameters. Many variables determine whether 

current approaches for HAR are effective. Traditional 

deep learning methods suffer greatly from overfitting 

and lengthy model training times. Also, when 

compared to HAR models made with devices like 

mobile phones in mind, which have lesser 

computational complexity, these models cause 

problems. In order to predict actions on the 1D HAR 

dataset, we provide a method that involves building 

three convolutional neural networks (CNNs) with 1D 

convolutional layers. One spatial or temporal 

dimension is all it takes to build a convolution kernel 

with the layer input in the 1D convolution layer. 

After that, it takes an average of the three models and 

uses it to create an ensemble model. As a multiple 

classifier system, ensemble learning [12] boosts 

model performance and outperforms individual 

models. We continue by generating further pairs of 

models, such as first and second, second and third, 

and first and third. Overall, the model's performance 

has been enhanced via ensemble learning. Here is the 

breakdown of the remaining sections of the paper: 

Section II provides information on the dataset, 

Section III explains the process, and Section IV 

shows and talks about the results findings, and the 

article is wrapped up in Section V. 

 

II. DATASET 

 
Human Activity Recognition ensemble learning was 

applied using a dataset supplied by Wireless Sensor 

Data Mining (WISDM) Lab [13]. All all, 36 people, 

each armed with a smartphone, contributed to this 

dataset. The integrated tri-axial accelerometer (x-, y-, 

and z-axis) is the data-collecting sensor. Twenty 

samples per second is the sampling frequency. Six 

categories representing common everyday tasks make 

up the dataset. Here is the breakdown of the classes: 
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Fig. 1. Class distribution for WISDM dataset 

 

As a first step, we normalize the data by pre-

processing it to have a zero-mean axis. One activity's 

three-axis graph is, as seen in Figure 2. 

 

 

Fig. 2. Tri-axial data for a single class (walking) 

 

Following the pre-processing, we modify the data by 

segmenting and shaping it to fit the 1D convolutional 

layers of the CNNs that are currently in use. We 

begin by creating indexes of a fixed-size window and 

then advance by half of the size of the window in 

order to split the data. Our final dataset will have 

dimensions like [total segments, input width and 

input channel] (in this example, [24403, 90, 3]) after 

we build segments of fixed size and add the 

windowed data. 

 

III. METHODOLOGY 
Our work in this study includes the development of 

three separate CNN-based models, the basis for 

which we built a number of ensemble learning 

models. In ensemble learning, several models or 

learners are taught to address a single issue. This 

paradigm's strength is in its generalizability. It may 

enhance performance output by enhancing the 

learning impact of poorer learners. The models' 

features and an overview are detailed in the following 

sections. First Model (A) The ConvPool-CNN-C 

architecture described in [14] served as an inspiration 

for the first model. It uses a typical pattern of max 

pooling and convolution layers back-to-back. In this 

model, the convolutional layers were activated using 

ReLU functions, and the max pooling and 2D 

convolutions were converted into 1D operations. To 

further decrease the propensity to overfit the training 

data, an extra feature is added: dropout regularization 

is used after each convolution filter. When compared 

to only using convolution and max pooling layers, 

this approach produces a better response. This model 

also makes use of fully linked layers, as opposed to 

ConvPool-CNN-C's global average pooling. The 

model's last fully connected layer uses a tanh  

 

activation to normalize, and then, in the last dense 

layer, a softmax function to optimize for the current 

classification situation. The model's architecture is 

shown in Figure 3. B. Adjacent Model A variant of 

the ALL-CNN-C, which is referenced in [14], is used 

as the second model. The term, ALL-CNN, comes 

from the fact that convolutional layers are used 

instead of max pooling layers, which is the 

fundamental difference between this model and the 

first. Instead of using max pooling layers, this model 

made use of many 1D convolutional layers activated 

by ReLU with stride 2. Model 2's construction is seen 

in Figure 4. The Third Model (C) The 'network in a 

network' model from [15] served as an inspiration for 

the third model. This model minimizes training time 

and optimization parameters by using a succession of 

convolution layers with 1x1 kernels. Additionally, 

dropout regularization was used to enhance precision. 

Figure 5 displays the model's architecture. 

http://www.jbstonline.com/


 Azim,, JBio sci Tech, Vol 13(2),2025, 01-06 
ISSN:0976-0172 

Journal of Bioscience And Technology 
www.jbstonline.com 

 

 

 

 
 
 

4 
 

 

Fig. 3. Model 1, inspired from the ConvPool-

CNN-C architecture. It utilizes alternating 1D 

convolution and max pooling layers with a 

fully connected layer. 

D. A combination of three models Next, we 

combined the three models into one ensemble. At the 

end, it takes the three models' outputs and averages 

them to get a mean output. The input layer is the 

same for all three models. While there are other ways 

to construct an ensemble model, we opted for a 

stacking ensemble pattern that averages the results 

from all of the convolutional neural network (CNN) 

architectures used. No training is necessary for the 

ensemble model; all training is done for the 

individual models. The three convolutional neural 

network ensemble model is shown in Figure 6. The 

three convolutional neural network (CNN) models 

were not only combined into an ensemble, but they 

were also coupled to create pairwise ensemble 

models. 

 

IV. RESULTS AND 

DISCUSSION 

Using the (WISDM) dataset, we trained and 

evaluated our models and ensembles [13]. Training 

accuracy and loss for all three CNN models are 

shown in Figures 7 and 8, respectively. After about 5 

epochs, the accuracies surpassed 90% and, by the end 

of the 50 epochs, they were approaching 99%. In 

contrast to the training process, the validation 

accuracies ranged from 70% to 80%, with a greater 

amount of variance noted. The ensemble model 

achieved much greater training accuracies and 

improved overall performance. 

 

Fig. 4. Model 2, adopted from the ALL-CNN-C 

architecture. This model utilizes all convolution 

layers and does not use any max pooling layers. 
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Fig. 5. Model 3, partially inspired by the Network 

in a Network (NIN) model. It utilizes a series of 1D 

convolution layers, a max pooling layer and fully 

connected layers. 

 

preciseness of assessment. The assessment accuracies 

of the CNN models compared to the ensemble 

models are summarized in Table 1. Table 1 shows 

that, compared to other models, ensemble models 

often result in more accurate evaluations. 

 
Fig. 6. Ensemble Model 

 

Fig. 7. Training Accuracies for Individual 

Models 

specifically designed convolutional neural network 

(CNN) models. Take note of the outcomes when the 

third model is part of the ensemble and its accuracy is 

raised (approx. 93%) as opposed to the third model's 

90% accuracy when used alone. In the literature, 

many non-ensemble designs were found, each 

producing its own set of gains and disadvantages. 

After 200 iterations, the LSTM-RNN HAR model 

described in [6] achieved an accuracy of 90%. A 

maximum recognition rate of 92.5% is achieved 

using the straightforward CNN-based method 

described in [5]. An 82% success rate was achieved 

using the multiclass SVM method that was discussed 

in reference [8]. Achieving an accuracy of 93.75% 

was the convnet plus multilayer perceptron based on 

inverted pyramid design described in [16]. The 

accuracy of our paired ensemble model, Paired 

Ensemble (1,2), was over 94% when compared to 

various methods. Reduced evaluation losses were a 

common result of the constructed ensemble models. 

 

 

TABLE I MODEL ACCURACIES 
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Fig. 8. Training Losses for Individual Models 

as compared to the individual deep learning 

models developed. 

 

V. CONCLUSION 
We showcased three convolutional neural network 

(CNN) models and their ensembles on the WISDM 

dataset of HAR. The results showed that compared to 

the individual models, the ensemble model performed 

better. Compared to the approaches described in the 

literature, one ensemble model outperformed the 

others. We see a class imbalance in the dataset we 

used; for example, 38% of the samples are from the 

walking class, whereas practically 5% are from the 

sitting and standing classes. If we can eliminate the 

class imbalance from the dataset in the future, the 

findings could be much better. A possible area for 

further investigation may be to do weighted ensemble 

learning such that the best performing model has the 

greatest influence in the ensemble. Currently, an 

ensemble is produced by averaging the three models. 

In addition, we may go into the realm of hybrid 

model ensemble learning, which entails combining 

CNN and RNN models. 
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